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Abstract
We obtain approximate analytical expressions for the frequency operator
for anharmonic oscillators by means of perturbation theory and a unitary
transformation.
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1. Introduction

Straightforward application of perturbation theory to nonlinear equations of motion in classical
mechanics gives rise to secular terms that increase unboundedly with time even for periodic
motion [1–3]. The Lindstedt–Poincaré technique, the method of renormalization and the
method of multiple scales are some of the approaches that enable one to correct such unphysical
behaviour of the approximate solutions [1–3]. The actual frequency of the motion, which
appears explicitly as a natural consequence of the application of those procedures, plays an
important role in the perturbation calculation.

Unphysical secular terms also appear in the application of time-dependent perturbation
theory to quantum-mechanical systems. In order to remove them, several authors have
adapted the methods of classical mechanics mentioned above and applied them to anharmonic
oscillators as simple illustrative examples. The methods of Lindstedt–Poincaré and
Bogoliubov and Krylov [4, 5], multiple-scale analysis [6–8], the renormalization-group
method [9], a near-identity transformation [10], Taylor series approach [11, 12], normal
ordering technique [13] and a time-independent eigenoperator method [14, 15] have proved
suitable for this purpose. In these approaches the counterpart of the classical frequency is
played by a q-number renormalized frequency or frequency operator.

Bender and Bettencourt’s recent papers [6, 7] have motivated the interest in the equations
of motion for the Heisenberg operators for the one-dimensional quartic anharmonic oscillator
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[8–15]. These authors generalized the method of multiple scales and obtained a frequency
operator in terms of the unperturbed Hamiltonian that they interpreted as an operator form of
mass renormalization that provides the first-order shift of energy differences [6, 7]. It does
not appear to be well known that much earlier Aks [4] and Aks and Carhart [5] had also
derived a q-number renormalized frequency for the Heisenberg position operator that they
also interpreted as a kind of mass renormalization. Other authors showed marked interest in
the quartic anharmonic oscillator; for example, Mandal [11] proposed a Taylor series method,
Egusquiza and Valle Basagoiti [9] resorted to a renormalization-group technique,and Kahn and
Zarmi [10] developed a near-identity transformation. Later, Pathak [13] generalized first-order
results from quartic to higher anharmonicity, and Fernández [14, 15] obtained expressions of
first order for general anharmonic oscillators and of second order for the quartic case.

Unlike the frequency in classical mechanics, the frequency operator for quantum-
mechanical models does not appear to be uniquely defined, as shown by the fact that different
methods may produce seemingly different frequency operators [4–7, 9–15]. The reason is that
the form of the frequency operator in the resulting expressions depends on its relative position
with respect to other operators that do not commute with it.

By means of a most interesting nonperturbative approach, Speliotopoulos [16] derived
an expression for the frequency operator in terms of the Hamiltonian of a quartic anharmonic
oscillator valid through second order of perturbation theory. The purpose of this paper
is to generalize Speliotopoulos’s result to other anharmonic oscillators and to higher
perturbation orders. In section 2 we outline the frequency-operator method in much the
same way Speliotopoulos did [16]. In section 3 we derive approximate expressions for the
frequency operator for anharmonic oscillators by means of perturbation theory and a unitary
transformation.

2. The frequency-operator method

The frequency-operator method is based on a straightforward generalization of the harmonic-
oscillator algebra for the creation and annihilation boson operators [16]. Given the Hamiltonian
operator Ĥ , we look for an operator b̂ that satisfies the following equations [14–16]:

[Ĥ , b̂] = −�̂b̂

[Ĥ , �̂] = 0 �̂† = �̂
(1)

where �̂ is the frequency operator. In order to avoid unnecessary complications, we assume
that the complete set of commuting observables is simply given by the Hamiltonian operator,
so that any operator that commutes with Ĥ is a function of it. In the particular case of the
frequency operator, we have �̂ = �(Ĥ).

The adjoint of b̂ satisfies

[Ĥ , b̂†] = b̂†�̂. (2)

Note that equations (1) and (2) do not determine the operators b̂ and b̂† completely. In fact,Ŵ b̂

satisfies equation (1) for any operator Ŵ that commutes with Ĥ .
If we rewrite the operator equation eαĤ b̂ e−αĤ = e−α�̂b̂ as eα(Ĥ+�̂)b̂ = b̂ eαĤ , expand

both sides in powers of α and compare the coefficients of the same power of this parameter,
we conclude that (Ĥ + �̂)kb̂ = b̂Ĥ k . Therefore, if we can expand the function F(Ĥ ) in a
formal power series of Ĥ , we obtain

b̂F (Ĥ ) = F(Ĥ + �̂)b̂ ⇒ [b̂, F (Ĥ )] = [F(Ĥ + �̂) − F(Ĥ )]b. (3)
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Analogously, we have

F(Ĥ )b̂† = b̂†F(Ĥ + �̂) ⇒ [F(Ĥ ), b̂†] = b̂†[F(Ĥ + �̂) − F(Ĥ )]. (4)

If we define the function F(k, Ĥ ) as

b̂kF (Ĥ ) = F(k, Ĥ )b̂k F (0, Ĥ ) = F(Ĥ ) (5)

it follows from b̂kF (Ĥ ) = b̂F (k − 1, Ĥ )b̂k−1 = F(k − 1, Ĥ + �̂)b̂k that

F(k, Ĥ ) = F(k − 1, Ĥ + �̂) k = 1, 2, . . . . (6)

From this recurrence relation, we easily obtain F(k, Ĥ ) for any value of k.
It is not difficult to prove that b̂†b̂ is a constant of motion:

[Ĥ , b̂†b̂] = [Ĥ , b̂†]b̂ + b̂†[Ĥ , b̂] = b̂†�̂b̂ − b̂†�̂b̂ = 0. (7)

On the other hand,

[Ĥ , b̂b̂†] = [b̂b̂†, �̂] ⇒ [Ĥ + �̂, b̂b̂†] = 0. (8)

Consider a complete set of eigenfunctions common to both operators Ĥ and �̂:

Ĥ�n = En�n �̂�n = �n�n. (9)

It follows from the hypervirial theorem

〈�m|[Ĥ , b̂]|�n〉 = (Em − En)〈�m|b̂|�n〉 (10)

and equations (1) and (9) that

(Em − En + �m)〈�m|b̂|�n〉 = 0. (11)

Since the operator b̂ is nonzero, there must be a pair of states �m and �n such that
bmn = 〈�m|b̂|�n〉 �= 0. We then realize that �̂ plays the role of a frequency operator
because its eigenvalues are energy differences:

�m = �(Em) = En − Em. (12)

Speliotopoulos discussed other interesting properties of the frequency operator [16]. Here
we mention that the time evolution of the operator b̂ is simply given by (h̄ = 1 for dimensionless
equations)

b̂(t) = eitĤ b̂ e−itĤ = e−it�̂b̂ (13)

and its matrix elements are periodic functions of time,

〈�m|b̂(t)|�n〉 = e−it�̂m 〈�m|b̂|�n〉 = eit (Em−En)〈�n|b̂|�m〉. (14)

For any sufficiently well-behaved operator function Ô = O(b̂, b̂†), we have

eitĤ Ô e−itĤ = Ô(e−it�̂b̂, b̂† eit�̂). (15)

3. Approximate solutions by means of perturbation theory

It is not possible to solve equations (1) exactly, except for some trivial models. However, one
can obtain approximate solutions by means of perturbation theory if it is possible to write
Ĥ = Ĥ 0 + λĤ ′ in such a way that one can exactly solve the relevant equations for Ĥ 0. One
easily proves that the coefficients of the expansions

�̂ =
∞∑

j=0

�̂jλ
j b̂ =

∞∑
j=0

b̂jλ
j (16)
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satisfy the operator equations [14, 15]

[Ĥ 0, �̂j ] = [�̂j−1, Ĥ
′] [Ĥ 0, b̂j ] + �̂0b̂j = [b̂j−1, Ĥ

′] −
j∑

k=1

�̂kb̂j−k . (17)

In the particular case of anharmonic oscillators Ĥ = (p̂2 + x̂2)/2 + λx̂2m/(2m), �̂0 = 1 and
�̂1 commutes with the harmonic part Ĥ 0 . Fernández [14] has recently derived �̂1(Ĥ 0) for
several values of the anharmonicity exponent m and �̂1(Ĥ 0) and �̂2(â, â†) for the quartic case
Ĥ = â†â + 1/2 + λ(â† + â)4/16 [14, 15]. By means of the method developed in this section
and a semiclassical approach, Speliotopoulos obtained [16]

�̂(Ĥ ) = 1 + 3ε
(
Ĥ + 1

2

) − ε2
[

69
64

(
Ĥ + 1

2

)2 − 9
2

(
Ĥ + 1

2

)
+ 15

2

]
+ · · ·

Ĥ = â†â +
1

2
+

ε

4
(â† + â)4.

(18)

which after expanding through order ε2, and substituting ε = λ/4, leads to the perturbation
expansion derived by Fernández [15].

In what follows we propose a straightforward systematic derivation of the frequency
operator �̂ = �(Ĥ) by means of perturbation theory. The method is particularly simple
because it avoids the operator equations (17) used in earlier approaches [14, 15]. Rayleigh–
Schrödinger perturbation theory gives us the coefficients of the expansions [3]

En =
∞∑

j=0

En,jλ
j �n =

∞∑
j=0

�n,jλ
j (19)

where �n,0 = �n and En,0 = εn are the eigenvectors and eigenvalues of Ĥ 0:

Ĥ 0�n = εn�n. (20)

Following a recent application of multiple-scale techniques to anharmonic oscillators, we
consider a unitary operator T̂ that maps one set of eigenvectors onto the other [8]:

�n = T̂ �n T̂ † = T̂ −1. (21)

It follows from equations (9) and (21) that

Ĥ�n = En�n Ĥ = T̂ Ĥ T̂ †. (22)

Since Ĥ 0 forms by itself a complete set of commuting observables for the unperturbed system,
then Ĥ = H(Ĥ 0), and En = H(εn).

As a particular case we consider a one-dimensional anharmonic oscillator with
Hamiltonian operator Ĥ = H(â, â†), where H(x, y) is an analytical function of its arguments,
and â and â† are the annihilation and creation boson operators, respectively, that satisfy
[â, â†] = 1. An appropriate reference model for this problem is the harmonic oscillator

Ĥ 0 = n̂ + 1
2 (23)

where n̂ = â†â is the occupation number operator. It follows from equation (22) that

Ĥ = H(Ĥ 0) = f (n̂) (24)

where f (n) = En. Taking into account that equation (3) becomes

[f (n̂), â] = −ω̂â ω̂ = ω(n̂) = f (n̂ + 1) − f (n̂) (25)

one easily proves that

[Ĥ , T̂ †âT̂ ] = −T̂ †ω̂T̂ T̂ †âT̂ . (26)
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Therefore, if we define

b̂ = b(â, â†) = T̂ †âT̂ �̂ = T̂ †ω̂T̂ (27)

equation (26) becomes a particular case of equation (1). Note that the frequency operator �̂

given by equation (27) is already a constant of motion:

[Ĥ , �̂] = T̂ †[f (n̂), ω(n̂)]T̂ = 0. (28)

Under such conditions the first terms of the operator series (16) are �̂0 = 1 and b̂0 = â.
One easily solves the perturbation equations for the coefficients b̂j and �̂j with appropriate
normalization conditions for the operators b̂ and b̂† (which in this case should be [b̂, b̂†] = 1)

[15]. The method is straightforward though tedious and applies to both the classical and
quantum cases [15]. The relevant fact is that no secular terms appear when we substitute the
perturbation series (16) into the time-evolution expressions (15).

The unitary transformation method just outlined provides a connection between a multiple-
scale analysis and the frequency-operator method [21]. In what follows we derive �̂ = �(Ĥ)

by means of perturbation theory and generalize previous results for the quartic harmonic
oscillator [16]. First of all note that

b̂�n = √
n�n−1 b̂†�n =

√
n + 1�n+1 (29)

and

�̂�n = �(En)�n = (En+1 − En)�n (30)

if the operators b̂ and �̂ are given by equation (27). In the particular case of the dimensionless
anharmonic oscillators

Ĥ = 1
2 (p̂2 + x̂2) + λx̂2K K = 2, 3, . . . (31)

where [x̂, p̂] = i, the coefficients of the series (16) for the frequency operator are polynomial
functions of the Hamiltonian operator:

�(Ĥ) =
∞∑
i=0

λi

(K−1)i∑
j=0

djiĤ
j . (32)

Therefore, if we substitute the well-known Rayleigh–Schrödinger perturbation series (19) into
�(En) − En+1 + En = 0, we easily obtain the coefficients dji of the expansion (32).

We have calculated the Rayleigh–Schrödinger perturbation series for the energy in terms
of En,0 = εn by means of the method of Swenson and Danforth [3] and the assistance of the
computer algebra system Maple (Maple 7, Waterloo Maple Inc., 2000). In this way we easily
obtain

�K=2(Ĥ ) = 1 +
(

3
2 + 3Ĥ

)
λ − (

153
16 + 51

4 Ĥ + 69
4 Ĥ 2)λ2 +

(
1305
16 + 3615

16 Ĥ

+ 639
4 Ĥ 2 + 633

4 Ĥ 3
)
λ3 + · · ·

�K=3(Ĥ ) = 1 +
(

45
8 + 15

2 Ĥ + 15
2 Ĥ 2

)
λ − (

58 725
256 + 17 115

32 Ĥ + 21 795
32 Ĥ 2 + 2115

8 Ĥ 3

+ 2565
16 Ĥ 4)λ2 + 53 895 375

2048 + 19 803 855
256 Ĥ + 59 204 895

512 Ĥ 2

+ 2509 125
32 Ĥ 3 + 6670 125

128 Ĥ 4 + 189 495
16 Ĥ 5 + 164 805

32 Ĥ 6)λ3 + · · ·
�K=4(Ĥ ) = 1 +

(
315
16 + 385

8 Ĥ + 105
4 Ĥ 2 + 35

2 Ĥ 3)λ − (
21 575 925

2048 + 14 152 075
512 Ĥ

+ 20 218 835
512 Ĥ 2 + 1529 605

64 Ĥ 3 + 1886 955
128 Ĥ 4 + 91 035

32 Ĥ 5

+ 35 245
32 Ĥ 6)λ2 + 2519 391 160 125

131 072 + 4427 902 688 545
65 536 Ĥ

+ 799 555 246 385
8192 Ĥ 2 + 413 550 044 985

4096 Ĥ 3 + 234 829 791 035
4096 Ĥ 4

+ 65 083 588 255
2048 Ĥ 5 + 4469 666 565

512 Ĥ 6 + 812 317 765
256 Ĥ 7 + 189 065 205

512 Ĥ 8

+ 25 941 545
256 Ĥ 9)λ3 + · · · (33)
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for the quartic (K = 2), sextic (K = 3) and octic (K = 4) oscillators, respectively. This
equation extends Speliotopoulos’ second-order result for K = 2 (18) [16] to third order, and
shows two other cases K = 3 and K = 4 that were not published before, as far as we know.
Proceeding as already indicated above, we can easily derive similar expressions for any other
anharmonic oscillator as well as for higher perturbation orders.
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